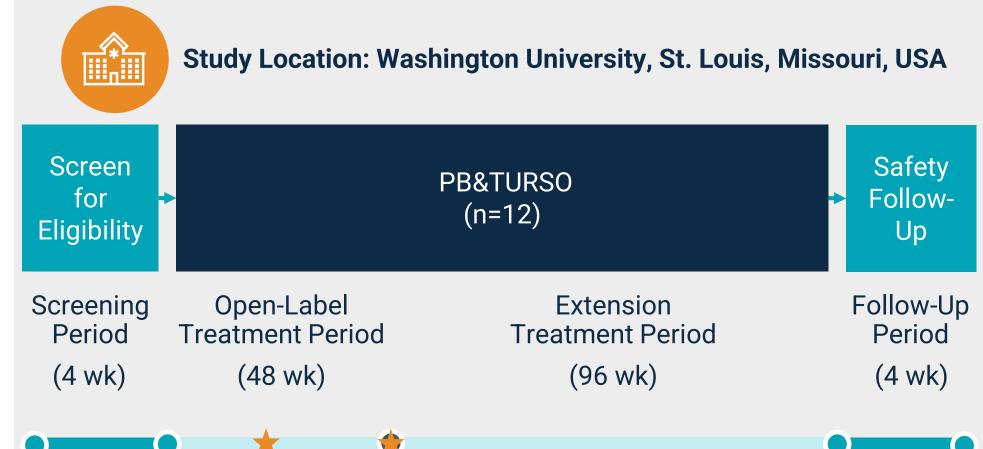
48-Week Results from the HELIOS Trial: A Phase 2, Open-Label Study Evaluating an Oral, Fixed-Dose Combination of Sodium Phenylbutyrate and Taurursodiol in Wolfram Syndrome

Fumihiko Urano¹, Bess Marshall², Stacy Hurst¹, Amy Viehoever³, Saumel Ahmadi³, Tamara Hershey⁴, Gregory Van Stavern,⁵ Paulina Cruz Bravo¹, Jennifer Powers Carson¹, Nathalie Erpelding⁶, Kelly Fox⁶, John Pesko⁶, Lahar Mehta⁶

¹Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri, USA; ²Departments of Pediatrics and Cell Biology, Division of Endocrinology and Diabetes, Washington University School of Medicine, St. Louis, Missouri, USA; ³Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA; ⁴Departments of Psychiatry and Radiology, Washington University School of Medicine, St. Louis, Missouri, USA; ⁴Departments of Psychiatry and Radiology, Washington University School of Medicine, St. Louis, Missouri, USA; ⁵Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, USA; ⁶ Amylyx Pharmaceuticals, Inc., Cambridge, Massachusetts, USA

BACKGROUND

HEI


- Wolfram syndrome (WS) is a rare, fatal, progressive monogenic disorder characterized by juvenile-onset insulin-requiring diabetes mellitus, optic nerve atrophy, diabetes insipidus, sensorineural hearing loss, and neurodegeneration¹⁻⁵
- PB&TURSO is an oral, fixed-dose combination of sodium phenylbutyrate and taurursodiol hypothesized to simultaneously target endoplasmic reticulum (ER) stress and mitochondrial dysfunction⁶⁻⁷, two pathways critical to the development of Wolfram syndrome^{1,8,9}
 - PB&TURSO has demonstrated pre-clinical efficacy in patient-derived cell and mouse WS models¹⁰
- The phase 2, open-label HELIOS trial is evaluating the safety/tolerability of PB&TURSO and its effects on

RESULTS

- The main analysis performed includes Week 24 data for all 12 participants (the Intent-to-Treat [ITT] population) and for the 11 participants with genetically confirmed Wolfram syndrome (the Per Protocol population)
 - Upon genetic review, one participant was determined not to meet inclusion/exclusion criteria; this participant had a pathogenic autosomal recessive mutation on one allele and a variant of uncertain significance on the other
 - Data was available for 11 participants at Week 48; one participant discontinued for reasons unrelated to safety
- Treatment with PB&TURSO showed overall stabilization or improvement relative to baseline on multiple outcomes across organ systems typically affected in Wolfram syndrome¹, including endocrine function (Figure 1), ophthalmologic function (Figure 2), and overall symptom burden (Figure 3)
- PB&TURSO was generally well tolerated with no serious adverse events and all treatment-emergent adverse events (TEAEs) graded mild or moderate
 - Diarrhea was the most common TEAE (58.3% in ITT); all cases were of mild severity
 - Dose reduction or drug interruption due to TEAE occurred in only 25% of participants and no TEAEs led to drug discontinuation

endocrinological, neurological, and ophthalmological function in Wolfram syndrome

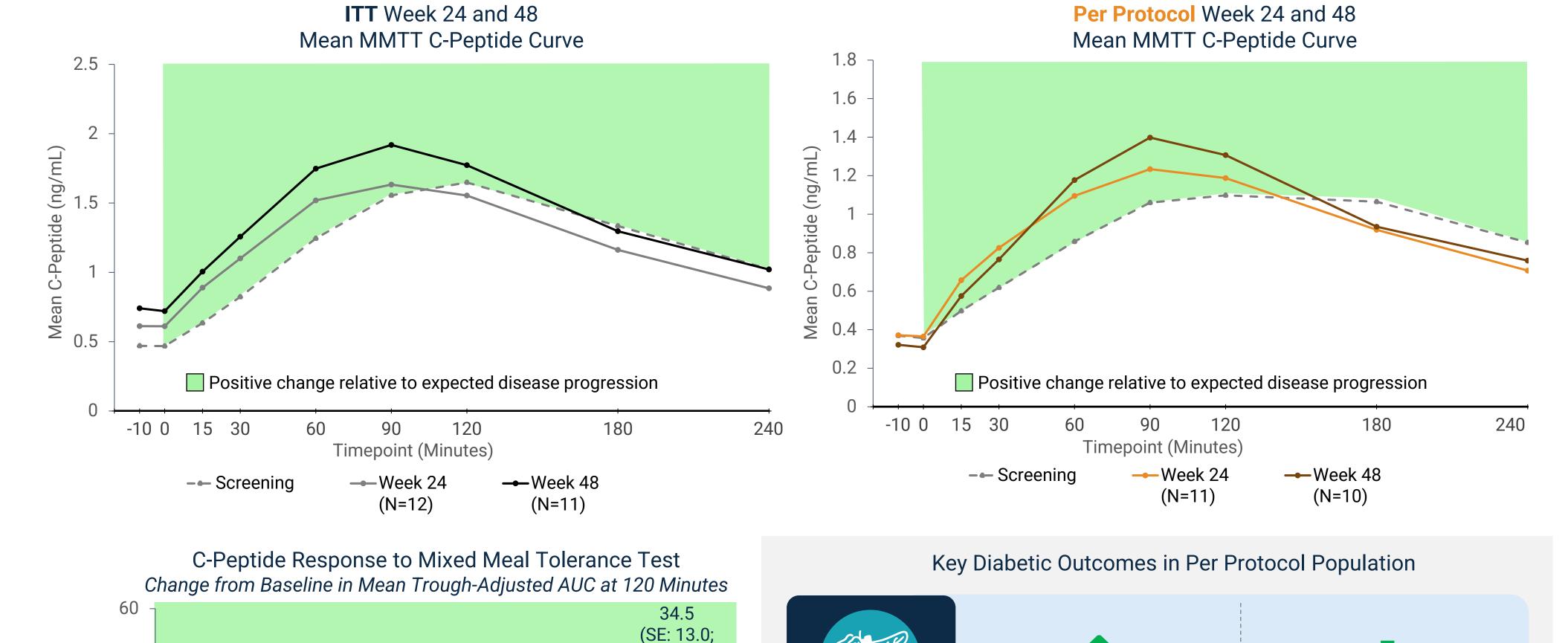
STUDY DESIGN

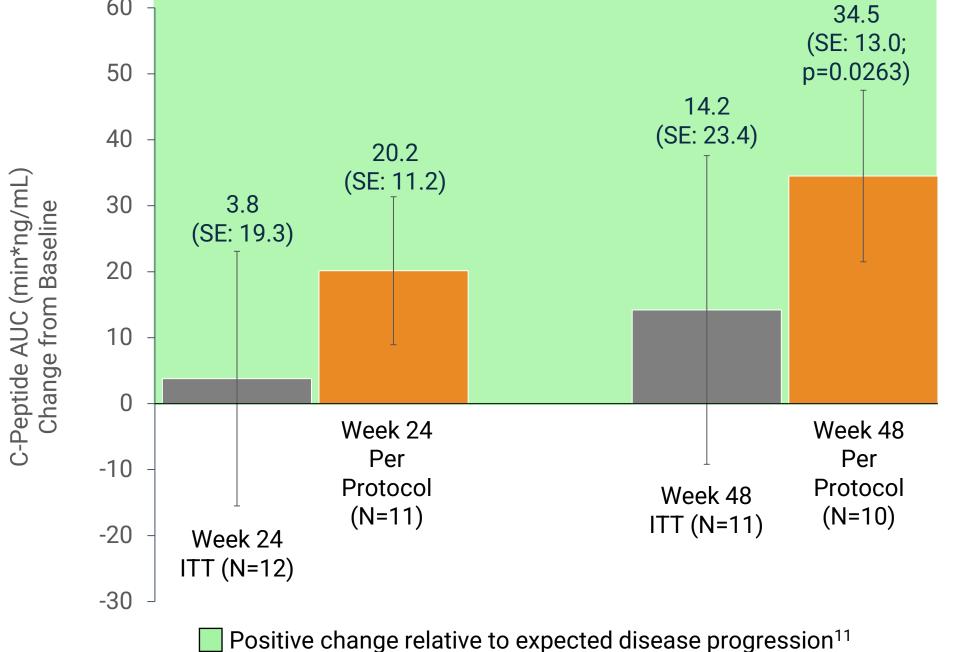
Week 24 and 48 Analyses

Aged ≥17 years

Key Trial Entry Criteria

Definite diagnosis of Wolfram syndrome^a


Stimulated C-peptide level of ≥0.2 ng/mL at Screening Insulin-dependent diabetes mellitus due to Wolfram


syndrome No current GLP-1 agonist use

Primary Efficacy

C-peptide (Δ C-peptide, area under the curve [AUC] C-peptide) change from baseline using 240-minute mixed

FIGURE 1. Improved Pancreatic Function, Beta Cell Responsiveness, and Glycemic Control

meal tolerance tests (MMTTs) C-peptide is co-secreted in a 1:1 ratio with insulin and is a measure of endogenous insulin secretion and pancreatic beta cell function

Key Secondary Efficacy

Trial Efficacy Endpoints^b

- HbA1c change from baseline Daily exogenous insulin dose change from baseline
- **Time in target glucose range** (70–180 mg/dL) change from baseline by continuous glucose monitoring (CGM)
- Best-corrected visual acuity (BCVA) change from baseline on the LogMAR scale using the Snellen chart

Select Exploratory

- Clinician-Reported Global Impression of Change (CGI-C)^c
- Patient-Reported Global Impression of Change (PGI-C)^c
- Participant experience from on-study qualitative interviews

^aDocumented functionally relevant recessive mutations on both alleles of the WFS1 gene based on historical test results (if available) or from a qualified laboratory at Screening

^bAll statistical summaries (including p-values) are descriptive in nature; p-values based on two-sided t-tests

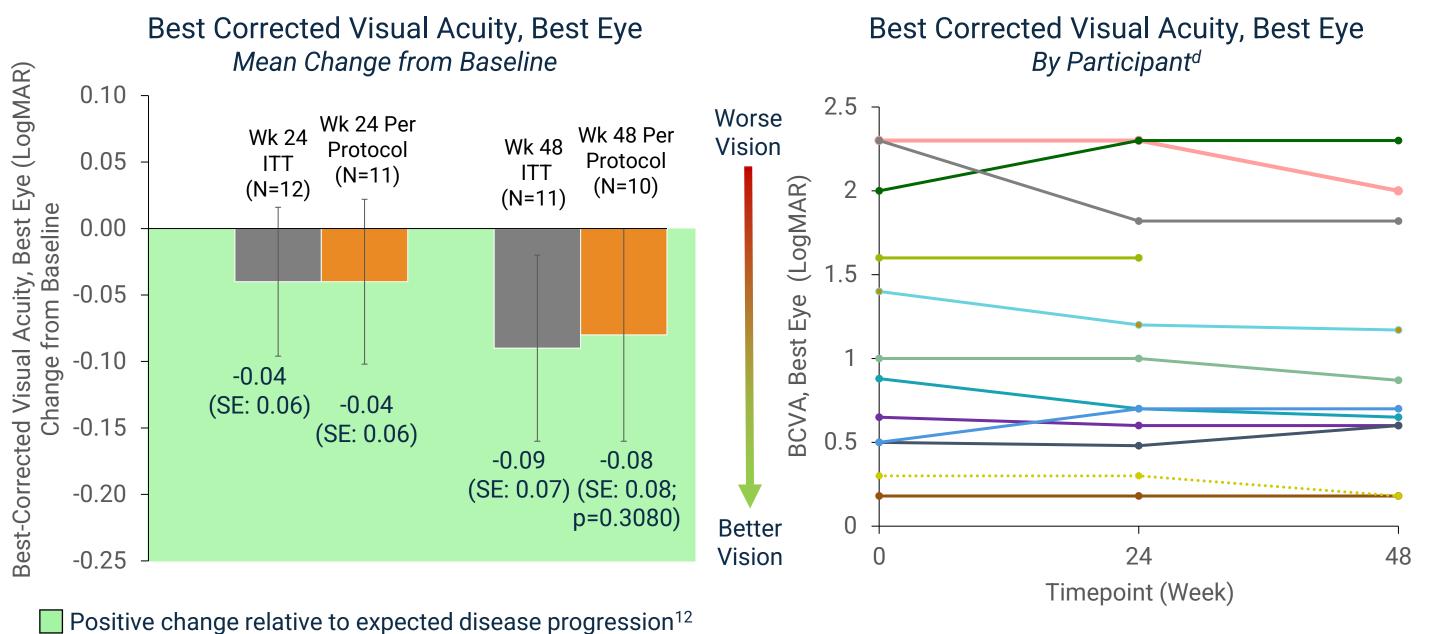
^cAsked to rate participant's change in symptom status since study start using a 7-point scale from 'Very Much Worse' to 'Very Much Improved'

- Due to the progressive nature of Wolfram syndrome, pancreatic β-cell function, glycemic control, visual function, and overall symptom burden typically worsen over time^{11,12}
- At Week 24, treatment with PB&TURSO instead showed overall stabilization or improvement relative

	HbA1c Wk 24: -0.16% (SE: 0.13%)°	Time in Target Glucose Range Wk 24: +5.7% (SE: 3.9%) ^c
Glycemic Control	Wk 48: -0.40% (SE: 0.22%; p=0.0998)°	Wk 48: +9.6% (SE: 5.8%; p=0.1350)°
^c Mean change from baseline to indicated timepoint		

Improved

C-Peptide Response


SE: Standard Error

Pancreatic

Function

See graphs above

FIGURE 2. Visual Acuity Stabilization and Trend Toward Improvement at Week 24 and 48 Compared to Baseline

8 of 11 Per Protocol participants demonstrated improved or stable visual acuity in their best eye from baseline to the latest available timepoint

Faster Time to Peak

C-Peptide

Abstract

P22

AMYLYX[®]

- Of remaining participants:
- 1 stable in one eye
- 2 worsened from Baseline to Week 24 but stabilized from Week 24 to 48

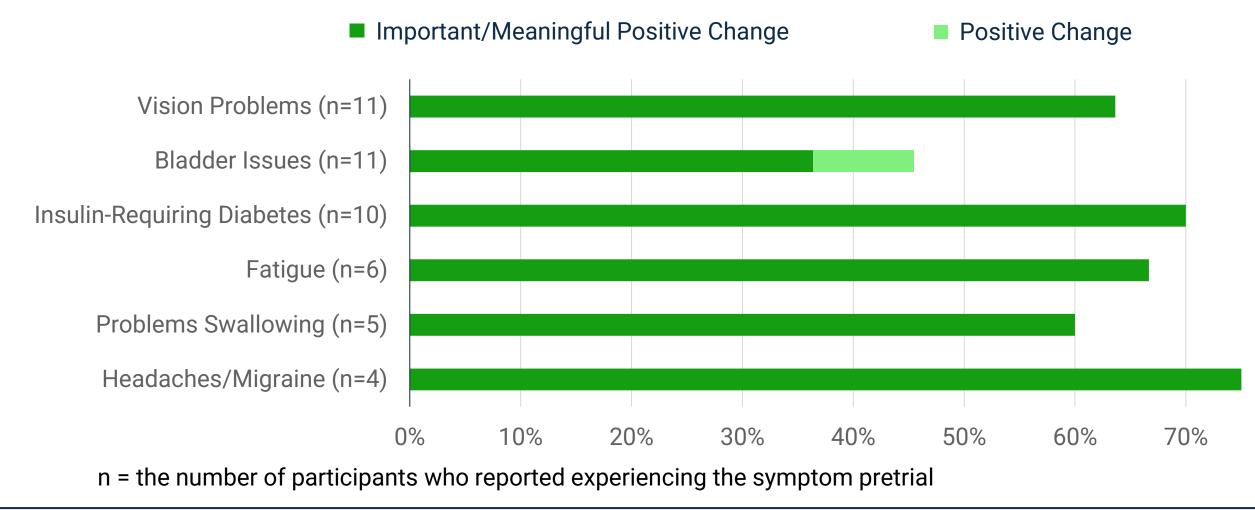

^dDotted line indicates participant excluded from Per Protocol analysis set

FIGURE 3. Reduced Overall Symptom Burden at Week 24 and 48 by Clinician and Participant Report

to baseline

- At Week 48, treatment with PB&TURSO showed sustained stabilization and/or improvement of pancreatic function, glycemic control, vision, and symptom burden
- Treatment with PB&TURSO in HELIOS is ongoing
- Results will inform planned Phase 3 program

PB&TURSO is an investigational drug for Wolfram syndrome and has not been approved for use by any health authority (e.g., the FDA and EMA). Positive Changes in WS-Related Symptoms by Participant Report in On-Study Interviews

In on-study interviews after at least 24 weeks of treatment, 9 of 11 reported improvements in \geq 1 WS-related symptom with all noting the change being meaningful in at least one symptom

- 100% of participants met responder criteria by self and clinician assessment (no change or improvement on PGI-C and CGI-C) at Week 24 and 48
- At Week 48, 6 of 10 Per Protocol participants reported improvement on PB&TURSO; 9 of 10 improved based on clinician report

Acknowledgments

The authors would like to thank the people living with Wolfram syndrome, their caregivers and family members, and advocates for providing feedback and advice on the study design. This study is sponsored by Amylyx Pharmaceuticals, Inc.

Disclosures

NE, KF, JP, and **LM** are or were full-time employees of Amylyx who may have had stock option/ownership in Amylyx Pharmaceuticals, Inc. at the time of the study.

References

Best-Co

1. Urano F. Diabetes. 2014;63(3):844-846. 2. Pallotta MT, et al. J Transl Med. 2019;17:238. 3. Lee E, et al. Front Genet. 2023;14:1198171. 4. Leslie M. Science. 2021;371(6530):663-665. 5. Matsunage et al. Plos One. 2014;9(9):106906. 6. Paganoni S, et al. N Engl J Med. 2020;383(10):919-930. 7. Paganoni S, et al. Supplemental appendix. N Engl J Med. 2020;383(10):919-930. Accessed October 2, 2023. https://www.nejm.org/doi/full/10.1056/nejmoa1916945. 8. Mishra R, et al. Ther Adv Rare Dis. 2021:2:26330040211039518. 9. Sarmara A, et al. Orphanet J Rare Dis. 2019; 14(1):279. 10. Kitamura RA, et al. JCI Insight. 2022;7(18):e156549. 11. Ray MK, et al. Pediatr Diabetes. 2022;23(2):212-218. 12. O'Bryhim BE,et al. Am J Ophthalmol. 2022;243:10-18.

> Presented at the Joint Congress of ESPE and ESE 2025; May 10-13, 2025; Copenhagen, Denmark © 2025 Amylyx Pharmaceuticals, Inc.

80%