

Reduction in Rate of Hypoglycemic Events with Avexitide in Post-Bariatric Hypoglycemia: Results from the Phase 2 and 2B Studies Colleen Craig, MD^{1*}; Tracey McLaughlin, MD, MS^{1*}; Zhengyu Yang, PhD^{2*}; Kelly Fox, MD^{2*}; Ryan Miller, MD^{2*}; Helen Margaret Lawler, MD^{3*}; Dawn Belt Davis, MD, PhD^{4*}; Marilyn Tan, MD, FACE^{1*} ¹Stanford University School of Medicine, Department of Medicine, Stanford, California, USA; ²Amylyx Pharmaceuticals, Inc., Cambridge, Massachusetts, USA; ³University of Colorado School of Medicine, Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, Aurora, Colorado, USA.

⁴University of Wisconsin, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Madison, Wisconsin, USA. *Potential conflict of interest may exist. Refer to the Disclosures section.

BACKGROUND

- Post-bariatric hypoglycemia (PBH) is a chronic condition characterized by hyperinsulinemic hypoglycemia that develops in some individuals who have undergone bariatric surgery¹⁻⁶
- PBH is believed to be caused by changes in hormonal and glycemic patterns, including an excessive glucagon-like peptide-1 (GLP-1) response, as a result of altered nutrient transit post-surgery¹⁻⁴
- PBH can cause debilitating hypoglycemic events associated with neuroglycopenia, including impaired cognition, poor coordination, loss of consciousness, and seizures which can result in a high degree of disability and major disruptions to independent living⁵
- Avexitide is an investigational, first-in-class glucagon-like peptide-1 (GLP-1) receptor antagonist designed to block the effect of excessive GLP-1, targeting a central pathway of PBH pathophysiology to mitigate hypoglycemia by decreasing insulin secretion and stabilizing glucose levels¹⁻
- To date, one Phase 2 randomized, multi-center, placebo-controlled crossover study (PREVENT trial) has been conducted to evaluate the efficacy and safety of avexitide for the treatment of PBH⁶

30mg Twice Daily

Phase 2 PREVENT Study

Once Daily

Phase 2b Study

Twice Daily

Once Daily

In addition, 8 investigator-initiated studies (including a Phase 2b study) have been performed that together demonstrated the effects of avexitide treatment on reducing hypoglycemia in individuals with PBH and those with hyperinsulinemic hypoglycemia following other, non-bariatric gastrointestinal surgeries (e.g., gastrectomy)^{3,7-13}

- Adverse events have generally been mild to moderate and transient with

^bRate defined as number of episodes in each treatment period normalized to 14 days

^cLevel 2 hypoglycemia: self-monitoring of blood glucose <54 mg/dL

- ^dLevel 3 hypoglycemia: a severe event characterized by altered mental and/or physical functioning that
- requires assistance from another person for recovery whether an individual receives external assistance or not ^eCompared to placebo in Phase 2 and run-in in Phase 2b

OBJECTIVE

reduction of Level 2 and 3 hypoglycemic events in prior Phase 2 trials of avexitide in PBH

METHODS

For each avexitide dose, the rate of composite Level 2 and 3 events^{c,d} was calculated as the weekly number of discrete events during the respective treatment periods of the Phase 2 and 2b clinical trials

- A negative binomial regression model was used, and a least-squares (LS) mean rate ratio (RR) vs placebo (for the Phase 2) and run-in (for the Phase 2b) of hypoglycemia during the treatment period was calculated
- For the Phase 2b, the model included treatment, treatment sequence, and surgery type stratum as fixed effect, event rate in run-in period as covariate, and offset by duration of treatment period

RESULTS

FIGURE 1. AVX Significantly Reduced Rates of Composite Level 2&3 Hypoglycemia

TABLE 1. Reduced Rates of Composite Level 2 and 3 Hypoglycemia in Phase 2

	Run-In Period n=17	Placebo n=17	Avexitide 30 mg Twice Daily n=17	Avexitide 60 mg Once Daily n=17	
Composite Weekly Rate of Level 2&3 Hypoglycemia					
Mean (SD)	1.37 (1.244)	1.47 (1.049)	0.89 (1.101)	0.66 (0.609)	
Median	1.04	1.50	0.50	0.50	
Rate Ratio (over placebo of hypoglycemia during treatment period)					
LS Mean (SE)	N/A	N/A	0.60 (0.260)	0.45 (0.233)	
95% CI	N/A	N/A	0.357, 1.016	0.281, 0.717	
P-Value	N/A	N/A	0.0571	0.0012	

Table 2. Reduced Rates of Composite Level 2 and 3 Hypoglycemia in Phase 2B

	Run-In Period n=16	Avexitide 45 mg Twice Daily n=16	Avexitide 90 mg Once Daily n=16			
Composite Weekly Rate of Level 2&3 Hypoglycemia						
Mean (SD)	1.39 (1.908)	0.51 (0.719)	0.59 (1.604)			
Median	0.93	0.25	0			
Rate Ratio (over run-in of hypoglycemia during treatment period)						
LS Mean (SE)	N/A	0.38 (0.298)	0.36 (0.325)			
95% CI	N/A	0.206, 0.687	0.187, 0.694			
P-Value	N/A	0.0021	0.0031			

Abbreviations: CI, confidence interval; SD, standard deviation; SE, standard error

Given that the phase 3 LUCIDITY trial will further evaluate avexitide in PBH with a primary efficacy outcome of composite reduction of Level 2 and 3 hypoglycemic events, the goal in this exploratory analysis is to understand the composite

CONCLUSIONS

- Avexitide significantly reduced rates of composite Level 2 and 3 hypoglycemia in its Phase 2 and 2b trials
- The 90 mg once daily dose, which is being further evaluated in the Phase 3 LUCIDITY trial, led to a 64% reduction in the composite rate of Level 2 and 3 events (p=0.0031)

SUN-627

- With 90 mg once daily, mean and median number of events per week were 0.59 and 0, respectively, vs 1.39 and 0.93 during the run-in period
- The Phase 3 LUCIDITY trial is currently recruiting in the United States with topline data anticipated in 1H 2026

Avexitide is an investigational drug and has not been approved for use by any health authority (e.g., the FDA and EMA).

Acknowledgements

The authors would like to thank the Phase 2 and 2b trial participants and their families. The Phase 2 and 2b studies were sponsored by Eiger BioPharmaceuticals, Inc. This analysis was sponsored by Amylyx Pharmaceuticals, Inc.

Disclosures

CC reports consulting fees, license/APA compensation, and compensation (including travel-related) for participation in a scientific advisory board from Amylyx. **ZY, KF**, and **RM** are or were full-time employees of and may have stock option ownership in Amylyx Pharmaceuticals, Inc. TM reports consulting fees from Amylyx, patents licensed to Amylyx, and compensation (including travel-related) for participation in a scientific advisory board from Amylyx. HML reports compensation (including travel-related) for participation in a scientific advisory board from Amylyx and reports consulting fees from Vogenx. DBD reports compensation (including travel-related) for participation in a scientific advisory board from Amylyx and reports reimbursement of travel from Recordati. **MT** reports consulting fees and scientific advisory board and travel compensation from Amylyx.

References

1. Salehi M, et al. J Clin Endocrinol Metab. 2018;103(8):2815-2826. **2.** McLaughlin T, et al. J Clin Endocrinol Metab. 2010;95(4):1851-5. **3.** Craig CM, et al. Diabetes Obes Metab. 2018;20(2):352-361. **4.** Sheehan A, et al. Diabetes Metab Syndr Obes. 2020;13:4469-4482. **5.** Hazlehurst J, et al. Endocr Connect. 2024;13(5):e230285. 6. Craig CM, et al. J Clin Endocrinol Metab. 2021;106(8)e3235-e3248. 7. Tan M. Oral presentation at: ENDO 2022; June 11-14, 2022; Atlanta, Georgia. 8. Salehi M, et al. Diabetes. 2011;60(9):2308-2314. 9. Salehi M, et al. Gastroenterology. 2014;146(3):669-680. 10. Larraufie P, et al. Cell Rep. 2019;26(6):1399-1408. 11. Calabria AC, et al. Horm Res Paediatr. 2016;85(2):140-146. 12. Craig CM, et al. Diabetologia. 2017;60(3):531-540. 13. Tan M, et al. Diabetes Obes Metab. 2020;22(8):1406-1416.

> Presented at ENDO 2025; July 12 - 15, 2025; San Francisco, CA © 2025 Amylyx Pharmaceuticals, Inc.